La evolución prospectiva de las redes sociales desde la perspectiva de la neurofenomenología

Autores/as

DOI:

https://doi.org/10.36390/telos262.24

Palabras clave:

Ataque informativo, higiene informativa, salud mental, factores psicoemocionales, resistencia

Resumen

El propósito del presente artículo es identificar aspectos neurofenomenológicos que influyen en el desarrollo futuro de las redes sociales y desarrollar un concepto correspondiente de política regulatoria. En el artículo se utilizan los siguientes métodos: recopilación y análisis de información, modelado de una red social condicional, sistematización y separación de factores neurofenomenológicos, determinación de dependencias funcionales, desarrollo de conclusiones y propuestas analíticas. Se ha establecido que los instigadores y un entorno favorable en las redes sociales son condiciones previas para la difusión de campañas de información negativa (ataques condicionales). Al mismo tiempo, está matemáticamente demostrado que con un mínimo desarrollo de la resistencia a los ataques informativos entre los usuarios de las plataformas de medios sociales, se determinó el potencial para estabilizar el entorno informativo de las redes sociales y promover el avance sostenible de la sociedad natural. Con base en los resultados de la investigación, se determinó que fomentar las habilidades de pensamiento crítico, mantener la estabilidad de la información y practicar una sana higiene digital personal entre los usuarios son factores clave para mantener la estabilidad general de las redes sociales. Además, estas prácticas promueven el desarrollo sostenible de una comunidad psicológicamente sana que, en última instancia, contribuye al avance de la civilización en su conjunto. Investigaciones adicionales se centran en elaborar la noción de política regulatoria para facilitar el avance prospectivo de las redes sociales.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Agarwal, B., Agarwal, A., Harjule, P., & Rahman, A. (2023). Understanding the intent behind sharing misinformation on social media. Journal of Experimental & Theoretical Artificial Intelligence, 35(4), 573-587. https://doi.org/10.1080/0952813X.2021.1960637

Benrouba, F., & Boudour, R. (2023). Emotional sentiment analysis of social media content for mental health safety. Social Network Analysis and Mining, 13(1), 17. https://doi.org/10.1007/s13278-022-01000-9

Bioglio, L., & Pensa, R. G. (2017). Modeling the impact of privacy on information diffusion in social networks. In: Complex Networks VIII: Proceedings of the 8th Conference on Complex Networks, CompleNet 2017, vol. 8 (pp. 95-107). Springer International Publishing. https://doi.org/10.1007/978-3-319-54241-6_8

Bonifazi, G., Corradini, E., Ursino, D., & Virgili, L. (2023). A social network analysis–based approach to investigate user behaviour during a cryptocurrency speculative bubble. Journal of Information Science, 49(4), 1060-1085. https://doi.org/10.1177/0165551521104742

Bouyer, A., Beni, H. A., Arasteh, B., Aghaee, Z., & Ghanbarzadeh, R. (2023). FIP: A fast overlapping community-based Influence Maximization Algorithm using probability coefficient of global diffusion in social networks. Expert Systems with Applications, 213, 118869. https://doi.org/10.1016/j.eswa.2022.118869

Cardeña, E., Lindström, L., Goldin, P., van Westen, D., & Mårtensson, J. (2023). A neurophenomenological fMRI study of a spontaneous automatic writer and a hypnotic cohort. Brain and Cognition, 170, 106060. https://doi.org/10.1016/j.bandc.2023.106060

Chaffey, D. (2023, June 07). Global social media statistics research summary 2023. Smart Insights (Marketing Intelligence) Ltd. https://www.smartinsights.com/social-media-marketing/social-media-strategy/new-global-social-media-research/

Chou, H. L., & Chou, C. (2023). How teens negotiate privacy on social media proactively and reactively. New Media & Society, 25(6), 1290-1312. https://doi.org/10.1177/14614448211018797

Conde, R., & Casais, B. (2023). Micro, macro and mega-influencers on instagram: The power of persuasion via the parasocial relationship. Journal of Business Research, 158, 113708. https://doi.org/10.1016/j.jbusres.2023.113708

Dhiman, D. B. (2023). Ethical Issues and Challenges in Social Media: A Current Scenario. http://dx.doi.org/10.2139/ssrn.4406610

Dixon, S. J. (2023a, August 29). Most popular social networks worldwide as of January 2023, ranked by number of monthly active users (in millions). Statista. https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/

Dixon, S. J. (2023b, August 29). Number of social media users worldwide from 2017 to 2027 (in billions). Statista. https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/

Ganguly, M., Dey, P., Chatterjee, S., & Roy, S. (2022, June). Influential Node Detection in Online Social Network for Influence Minimization of Rumor. In: Proceedings of International Conference on Frontiers in Computing and Systems: COMSYS 2021 (pp. 589-596). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0105-8_58

Garg, M. (2023). Mental health analysis in social media posts: a survey. Archives of Computational Methods in Engineering, 30(3), 1819-1842. https://doi.org/10.1007/s11831-022-09863-z

González‐Bailón, S., & Lelkes, Y. (2023). Do social media undermine social cohesion? A critical review. Social Issues and Policy Review, 17(1), 155-180. https://doi.org/10.1111/sipr.12091

Hawkins, Y. (2023). Traditional Bullying and Cyberbullying in Adolescence: A Review of Mental Implications & Policy. Doctoral dissertation, California State University, Northridge. https://scholarworks.calstate.edu/downloads/4x51hr721

Heidari, E., Salimi, G., & Mehrvarz, M. (2023). The influence of online social networks and online social capital on constructing a new graduate students’ professional identity. Interactive Learning Environments, 31(1), 214-231. https://doi.org/10.1080/10494820.2020.1769682

Huang, P. C., Latner, J. D., O’Brien, K. S., Chang, Y. L., Hung, C. H., Chen, J. S., ... & Lin, C. Y. (2023). Associations between social media addiction, psychological distress, and food addiction among Taiwanese university students. Journal of Eating Disorders, 11(1), 1-9. https://doi.org/10.1186/s40337-023-00769-0

Kemp, S. (2023, July 20). Digital 2023 july global statshot report — datareportal – global digital insights. DataReportal – Global Digital Insights. https://datareportal.com/reports/digital-2023-july-global-statshot

Laughlin, C. D. (2023). Intersubjectivity, Empathy, Life‐World, and the Social Brain: The Relevance of Husserlian Neurophenomenology for the Anthropology of Consciousness. Anthropology of Consciousness, 34(1), 229-260. https://doi.org/10.1111/anoc.12171

Marinovic, M. M., Glaría, A., & Muñoz, J. M. (2016). Neurophenomenology of Social Tension: A theoretical framework for modelling prospective scenarios. In: SAI Intelligent Systems Conference, vol. 15, 232-250. https://cutt.ly/QwxChuF9

Meleshko, E.V., Dreeva, H. M., & Dreev, O. M. (2020). A method of clustering social network users based on neural networks. In: Proceedings of the XXII International Scientific and Practical Seminar named after A.Y. Petreniuk "Combinatory Configurations and Their Applications" pp. 86-89. Zaporizhzhia. https://dspace.sfa.org.ua/bitstream/123456789/488/1/Materiali_22_seminaru.pdf#page=86

NetLogo. (2023). Home Page. The CCL. Available at: https://ccl.northwestern.edu/netlogo/

Popat, A., & Tarrant, C. (2023). Exploring adolescents’ perspectives on social media and mental health and well-being – A qualitative literature review. Clinical Child Psychology and Psychiatry, 28(1), 323-337. https://doi.org/10.1177/1359104522109288

Racz, M. Z., & Rigobon, D. E. (2023). Towards consensus: Reducing polarization by perturbing social networks. IEEE Transactions on Network Science and Engineering. https://doi.org/10.1109/TNSE.2023.3262970

Safron, A. (2022). Integrated world modeling theory expanded: Implications for the future of consciousness. Frontiers in Computational Neuroscience, 16, 642397. https://doi.org/10.3389/fncom.2022.642397

Şimşek, A. (2022). Lexical sorting centrality to distinguish spreading abilities of nodes in complex networks under the Susceptible-Infectious-Recovered (SIR) model. Journal of King Saud University-Computer and Information Sciences, 34(8), 4810-4820. https://doi.org/10.1016/j.jksuci.2021.06.010

Smolla, M., & Akcay, E. (2023). Pathways to cultural adaptation: the coevolution of cumulative culture and social networks. bioRxiv, 2023-02. https://doi.org/10.1101/2023.02.21.529416

Sopcak, P. (2023). Understanding mixed and ambiguous emotions–integrating neurophenomenology and literary studies. Cognitive Neuroscience, 14(2), 73-74. https://doi.org/10.1080/17588928.2023.2181323

Sun, Q., Li, Y., Hu, H., & Cheng, S. (2019). A model for competing information diffusion in social networks. IEEE Access, 7, 67916-67922. https://doi.org/10.1109/ACCESS.2019.2918812

Timmermann, C., Bauer, P. R., Gosseries, O., Vanhaudenhuyse, A., Vollenweider, F., Laureys, S., ... & Lutz, A. (2023). A neurophenomenological approach to non-ordinary states of consciousness: hypnosis, meditation, and psychedelics. Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2022.11.006

Vörös, S. (2023). Neurophenomenology Revisited: From Naturalism to Dialectics. HUMANA. MENTE Journal of Philosophical Studies, 16(43), 59-87. https://www.humanamente.eu/index.php/HM/article/view/440

Wang, Z., Zhang, S., Zhao, Y., Chen, C., & Dong, X. (2023). Risk prediction and credibility detection of network public opinion using blockchain technology. Technological Forecasting and Social Change, 187, 122177. https://doi.org/10.1016/j.techfore.2022.122177

Wood, A., Kleinbaum, A. M., & Wheatley, T. (2023). Cultural diversity broadens social networks. Journal of Personality and Social Psychology, 124(1), 109. https://doi.org/10.1037/pspi0000395

Yang, K., Bao, Q., & Qiu, H. (2023). Identifying Multiple Propagation Sources with Motif-based Graph Convolutional Networks for Social Networks. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3287214

Descargas

Publicado

2024-05-20

Número

Sección

Artículos de investigación

Cómo citar

La evolución prospectiva de las redes sociales desde la perspectiva de la neurofenomenología. (2024). Telos: Revista De Estudios Interdisciplinarios En Ciencias Sociales, 26(2), 595-613. https://doi.org/10.36390/telos262.24

Artículos similares

1-10 de 320

También puede Iniciar una búsqueda de similitud avanzada para este artículo.